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Abstract

One of standard methods to pre<lict the phenomena of squeezing consists in splitting the

unitary evolution operator into the product of simpler operations (Yuen [1], Ma and Rhodes

[2]). The technique, while mathematically general, is not so simple in al)plications and leaves

some pragmatic problems open. We report an extended class of exponential formulae, which

yield a quicker insight into the laboratory details for a class of squeezing operations, and

moreover, can be alternatively used to programme different type of operations, as: l) the

free evolution inversion, 2) the soft simulations of the shar l) kicks (so that all abstract results

involving the kicks of the oscillator potential, become realistic laboratory prescriptions).

1 The manipulation problem

Below, we shall dissent fi'om the orthodox subject of "squeezed states" and dedicate some attention

to a more general problem. Suppose, one has a quantum system whose states are represented by

vectors in a Hilbert space 7/. Now, choose any unitary operator

u :7/-, 7/ (1)

Can U be achieved as a realistic evolution operation, performed under the influence of some

external fields?

The problem so stated, belongs to the quantum manipulation theory, a domain which has

progressed quickly in the last decades. The first cases of the dynamical manipulation (for a finite

dimensional space of states) achieved wide publicity under the name of the spin echo (e.g. [3]).
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The general problem of manipulation (control) of quantum states dates fl'om the works of Lamb

[4], Lubkin [5] and followers [6, 7, 8, 9, 10]. Quite independently, the subject has been 1,ut forward

ill quantum chemistry where it may soon become crucial Ill, 12 I. For all infinite dimensional

7-/ = L2(R) some dynamical operations present a considerable challenge but only one of them has

become a "conference subject". We of course refer to the operation of squeezing:

U = e (za_2-z'a2)/2 (general squeezing) z C C (2)

and/or

U -- e i;_(qp+pq)/2 (scale transformation,

coordinate squeezing)

E l:t (3)

Note, that there are several concepts of squeezing in the literature. By choosing (2-3) we ask

about the "operatorial squeezing", i.e. the shape transformation which affects all wave packets

alike, independently on their initial form. Thus, under the influence of (3) the canonical observ-

ables q, p are transformed into

UtqU = e-_q

U_pU = eXp (4)

and simultaneously all the wave packets _ = {tb (x)} are deformed as:

= k=e (5)

As found by Yuen [1], the simplest method of producing such effects in L2(R) consists in

application of variable oscillator potentials with the time dependent Hamiltonians:

2

H(t) = 2 +w(t)22; [q,p] = i (6)

and the most explicit illustrations of this fact can be found in the exponential formulae, which

express the evolution operator U(t) ]generated by (6)] as the product of simpler exponential

operations.

The very subject of the exponential identities has already some antiquity, starting from the

papers of Zassenhaus, Baker, Campbell and Haussdorff (BCH) ]13]. However, the exponential

identities of BCH type involve infinite series and do not offer closed solutions. The key to the

techniques of squeezing are the following formulae of Yuen [1] and Ma and Rhodes [2], which

might be interpreted as exactly soluble cases of BC, tt and Zassenhauss. If no linear terms in H(t)

are present, they read:

U(t) = eB(')"'2e_(t)"'"e e(t)": (Yuen, 1976) (7)
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and

U(t) =_ elZ(t)_*2-z'(t)_2l/2e-'_(t)"_a (Ma and Rhodes, 1988) (8)

where B(t), f_(t), E(t), z(t), a(t)are c-number coefficients and = means the proporcionality of

the unitary operators (U = U' _ U = ei'_U ', a E R). These identities precisely provide the proof

that the variable oscillator potentials (more generally: quadratic, time dependent Hamiltonians)

can produce the effects of squeezing (2) (or the scale transformation (3)). A particularly simple
r) O t

identity for two oscillator Hamiltonians Hj = p2/2 ÷ aJ_q'/2 acting during two time lapses rl, r2,

was detected by Griibl [14]. If the time intervals rl, r2 are in adequate proportion to the frequencies

a.,1, w2 (e.g., Wl'rl = 7r/2, _2r2 = 37r/2), then:

e i)_(qpTpq)/2 ___ e--ir2H2e -iTIH1, (9)

where A = lnco2/wl. (Note, that Grfibl had no confidence to the operatorial formulae. He has

proved (9) implicitely, working with Gaussian packets).

While mathematically complete, (7-8) are not quite easy to apply, due to involved systems

of non-linear equations for the c-number coefficients. This explaines a quick development of

alternative methods derived from evolution matrices or adiabatic invariants [15, 16]. Yet, the

"damped oscillator" of 1940 [17], and the "step-Hamiltonian" of Griibl (9) remain the principal

cases solved with all numerical details.

It will be our purpose to show that the trend of the algebraic identities (7- 8) is not at all

exhausted! To the contrary, appart of (7-8), it can provide a class of "easy formulae" for the

squeezing and for more general control operations.

2 The spin echo without spin

The first "easy formula" (accidentally detected in 1977 [6]) has the form of the "circular identity":

e-ip2/2e-iq2/2 e -_p2/2 . . . e -iq2/2 ----_1 (10)

t2 terms J

for the operators q, p in L2(R), with [q, p] = i. Note, that all signs in the exponents are the same:

the product (10) is therefore simpler than it could be in the classical case! The formula (10) has an

elementary operational sense. Every operator expI-ip2/2] represents the free evolution per unit

time of the Schrhdinger's particle in L2(R). Every exp[-iq2/2] is the unitary evolution operation

caused by infinitely sharp and quick pulse of time dependent oscillator potential (the "&like kick"

of the ellastic force):
e -_/2 = lim e -i_[QI2+_-lq2/21 (1 1)

t---,(J
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The identity (10) describes a dynamical "evolution loop": the wave packet m L2(R), manipulated

by 6 oscillator kicks and 6 free evolution intervals must return to its initial state (no matter what

this state was!). This might be illustrated by tile following closed diagramme:

I

I !

I

whose sides simbolize tlle free evolution intervals and vertices the oscillator kicks. All immediate

consequence of (10) is:

e +ip2/2 ._ e-iq2/2 e-ip2/2 • "" e-ip2/2e -iq2/2 (12)
L 1t

The right hand side represesents a sequence of admissible dynamical events (6 kicks and 5 rest

intervals), while the left one is the operator inverse to the free evolution. The formula (12) thus

tells how to invert the free evolution. Since (12) is an operator identity, the prescription can be

applied "in blind": every wave packet in L2(R), entertained by 11 dynamical events must "go

back ill time", returning to its past shape, no matter what this shape w_ts [8]. (Compare "Particle

Memory" of Brewer and Hahn [18].)

After some consideration, the formula (10) looses a part of mystery: it is just a "discrete

imitation" of the oscillator force (the oscillator potential acts only ill selected time moments,

producing nonetheless a closed dynamical process). Note however the existence of other "circular

identities" 18]:

e-ip2/2 e-iv_q2/2e-ip2/2 e +iv_q2/2 . . . e +iVf_q2/2 = 1 (13)

12-- '

The left hand side represents a sandwich of the 3 attractive and 3 repulsive pulses interrupted

by 6 free evolution intervals. One might expect that the _tttractive and repulsive shocks will cancel

"in average", producing a zig-zag equivalent of the free evolution. However, it is not the case. The

whole sequence traps the Schr6dinger's packets into a closed dance, with the evolution operator

- 1. Note furthermore:

(e-iP2/2e-iq2) 4= 1, (4 shocks, 4 free evolutions) (14)
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Both formulae (13-14) can be illustrated by graphs:

+2 +2

+2 +2

The simplest loop ill L2(R) must involve at least 3 kicks and 3 rest intervals; its general form is:

e-i'_p2/2e-i(_Fq2/2e-iflp2/2e -iTFq2/2e-i_p2/2e-iflFq2/2 = 1 (15)

F -- a+fl+l

[IF

ar

lts "incomplete version":

e +ivP2/2 -- e,iaFq2/2 e-iflP_/2e-i'lFq2/2 e-iap2/2 e-iflFq2/2 (16)

permits one to manipulate the free evolution at will. Thus, for (_, fl, _/ > 0, (16) provides a

prescription of how to enforce the Schr6dinger's wave packet to "go back in time", whereas for

7 < 0, (_, fl > 0 one obtains a "time machine" able to slow or accelerate the free evolution [8, 10].

The loop formulae are the obvious analogue of the spin-echo for non-spin states. As far as

we could check, the possibility of the (non-adiabatic) h)op effects in L2(R) was first predicted

in 1970 (by reinterpreting the transparency phenomenon of the potential wells; see Malkin and

Man'ko [19], p. 388), though the sui)ject was later pursued in a different direction. The first

kicked system was considered in 1977 ]6] and the manil)ulation of quantum states by potential

pulses was systematically studied since 1986 18, 9, 10].

The exponential identities suggest also how to generate the scale transformation. The simplest

formula requires again a pair of oscillator pulses of different amplitudes:

e-iA/2/2e.-i(l+l/A)q2/2e-ip'z/2e-i(l+A)q2/2 -- eilnA(qp+pq)/2 p (z7)

and produces the scale trallsformation SUl)erposed with parity (P). The repetition of the ()perator

sequence of (17) yields the gemune squeezing (without parity: one ()f the siml)lest cases of Brown

and Carson algorithm [20]). Some more general scenarios for the squeezing operation (2) (multil)le

kicks on a background of a constant ellastic force) are recently studied I21].

245



3 Evolution control in three dimensions

All these techniques concern the SchrSdinger's particle in 1 space dimension and are, in fact,

only all abstract introduction to physi(_ally important problems. It is thus essential to find their

analogues in 3 space dimensions. Some results can be ah'eady reported.

In the first place, the sequences of sign changing kicks [e.g. (13-14)] can be used to construct

sequences of harmonic pulses in R "_generating the loop effect in L2(R :_) 18]. This suggests, that

the loop effect (state echo) in R 3 might be produced, in principle, by shock waves of source free

externalfields. As the matter of fact, some closed dynamical processes can be induced even without

any kicks, by a source free, stationary field of an adequately gauged ion trap [9]. A simple scenario

of additional potential kicks (electric pulses applied to the trap walls) permits then to generate

effects of squeezing upon the charged wave packet retained in the trap interior (see the report by

one of us [91).

What no less important, tile effects of positive (attractive) oscillator potentials in L2(R) tra-

duce themselves immediately into effects of homogeneous magnetic fields in 3 space dimensions.

As an example, we have considered a quite simple sequence of identically shaped magnetic pulses

in three orthogonal direc.tions: n, m, s, n, m, s- • .. As we have reported on the previous IWSSUR

93, an adequate proportion between time separations and the pulse intensity assures that the

sequence must produce the loop effect for the wave packets in L2(R3). Moreover, the same opera-

tional scheme, with differently shaped pulses, turns out to work as a "time machine", permitting

to accelerate, slow or invert tile fi'ee evolution operation of the Schr6dinger's wave packet [10].

$

R

A sequence of homogeneous magnetic pulses from 3 orthog-

onal directions permits to manipulate tile free evolution (see

our report i,, IWSSUR 93).

4 The general manipulation scheme

The most immediate reason why one might be interested in the "evolution loops" is the possibility

of controlling the fltzziness (diffraction of tile wave packets due to its free evolution), essential for
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electronic microscopy, programming the non-demolishing measurements etc. (see also Caves et

al. [22], Yuen [23], Royer [241). Also, tile origi_ml subject of the transparent wells [19] might

still bring some surprises ]2.5]. However, the loop phenomenon seems most crucial for the general

manipulation methodology.

The class of the dynamical operations ilJduced by stationary fields is rather narrow (for the

SchrSdinger's particle they are always of the form exp[-iH] where the exponent H is at most

quadratic in p!).

Tile situation is more interesting for a microobject trapped in an oscillating field of an evolution

loop. As long as the loop fields are mantained, the wave packets perform a "periodic dance". A

distinct phenomenon occurs, if the loop fields are perturbed or imperfect. Instead of a closed

process, the system will then perform, after every loop period r, a non trivial unitary operation,

interpretable as the loop precession.

I L./(_)#= I

The precession of a distorted loop:

a natural key to the manipulation.

An elementary algebraic argument shows that the precession operations are much more general

than the operations stimulated by the stationary fields. In fact, they are the key to solve tile

manipulation 1)roblem: by "adding precessions" an arbitrary unitary operation U : _ ---* 7-/ can be

approximated [8]. In some cases, already an unsophisticated distortion of the "circular processes"

brings interesting results (like e.g. the squeezil_g or free evolution distortion in "wrong loops").

In principle, every one of the "circular identities" (10,13-15) is a natural starting point for some

manipulation procedures solving the inverse evolution problem (1). With one little ammendment,

however.

5 The "soft kicks"

The "ellastic kicks", while of undeniable illustrative value, are not so easily accessil)le in labora-

tories. The difficulty is ahnost anecdotic if the "6-like kick" has to be engilleered with the help of

homogeneous magnetic field acting e.g. inside of a cillindricaI solenoid. Since co2(t) of the resulting

"magnetic oscillator" is proportional to B(t) 2 [10l, (where B(t) is the magnetic field intensity),

the B (t) in the solenoid would have to model the square root of the Dirac's 5. The request might

be promising for the theory of non-linear distributions, but is a nightmare in the laboratory! (As-

that the laboratory team would dominate the techniques of approaching _/5(t), thesuming evell
¥ ,,
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radiative corrections would probably spoil tile effects of tlle operation).

What one needs are the soft analogues of oscillator kicks (11), and they are not so difficult

to programme with the hell) of exponential formulae. Below, we shall report a quite simple

"exponential experiment".

Consider frst of all the product of three operators:

W --- eiA(qP+Pq)/2e-i?q2/2e -i_(p2+q2)/2 (18)

Let's ask the question: can one choose A, 7, c_ to be three flmctions of time in such a way that

the product W flflfills a physically interpretable evolution equation

dW
- iH(t)W(t) (19)

dt

with H(t) having the oscillator form (6)? To simplify the problem, we shall first determine A and

7 as fimctions of c_, A = A(a) and 7 = 7(c_), and only afterwards we shall look for c_ = a(t). Each

term in (18) is easily differentiable:

++ (i-- = - ;_(.)_-_ + _(.)c'_¢=_-+_-_ +
da

2 . 2 +

+e i'_-ra e-iq'_ Hoe. '7_- e-ia_w¢_ ) W ((_ )

where H0 = p2/2 + q2/2 = aCa + 1/2. Due to the transh)rmation rule (4) and:

(20)

one easily finds:

• 2 . 2 (p+?q)2 q2
e-'_'_ Hoe"V_ - + --

2 2 (21)

i--_--- = T/(a) W(c_) = (-A+7) qp+pq _oa 722 + c -- + (+ + + 1)e 2_ W(a)

To assure that the term with (qp + pq)/2 vanish it suffices to put:

(22)

v(.) = i(.) (23)

thus obtaining:
2 2

"]"_(o_) =e-2A 2 -+- ('), -[- ,.),2 + 1)e2A 2

If now c_ = c_(t), the differential equation for W in terms of t reads:

(24)

dW ( ,t+__ -t
d--7: \ +. ] _(_)w(t), (25)
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and if in addition c_(t) is determined by:

da 2;q,) (26)-- =C

dt

then (25) acquires the familiar fi)rm:

dt 4- 9(t)-_ W(t) (27)

where a(t) is given by (26) and

g(t) = ('_ + 72 4- 1)c 4A(a(O) (28)

If now W(t) satisfies (27), then U(t) = W(t)W(O) -l solves the evolution prol)lem (6) with

_(t) 2 = 9(t) and with the initial condition U(0) = 1.

Adopting A(a) defined in [0, 27r] as our arbitrary "manipulation function", we can model at will

the desired properties of W(t) [and consistently, of U(t)]. Thus, if A(0) ¢ A(27r) but A(0) = A(27r),

U at a = 27r becomes the scale operator of form (4) and the function 9(t) defined by (28) gives

the prescription of how the effect can be generated. If, however, A(0) = A(27r) but 7_ = A(27r) ¢

A(0) = 0, the same product (18) reduces to the single non trivial term

W(t) = e -'_'_'/_ (29)

and henceforth, U imitates the effects of the 6-like kick of the oscillator force. As an example, we

report two simple computer simulations where the manipulation flmction A(a) yields either the
"soft imitation" of the oscillator kick or the coordinate squeezing (see below). It seems pertinent to

notice, that if an authentic kick were to be applied in the laboratory e.g. by creating a very short

and sharp magnetic pulse, then in the first place it could never be exact (nor well approached:

the 6-functions are not truly accessible in labs!) In our scenario below, this difficulty is absent:

Manipulation function

_(cz)

I/2

0 _ 2_
(X

X,(cz) = sin((x/2) - sin(or)/2

Ellastic amplitude g(O

g(t)
75

50

25

0 2

Effective Operation:

e "_2/"(repulsive kick)
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The kick effect can be exact (produced with unlimited accuracy), even if negative, and is

achieved by softly varying fields awaking little radiative response. By the same, all previous results

involving the oscillator kicks [6-9,23] c_Lu be interpreted as realistic l_Lbor_Ltory prescriptions. Note

also the squeezing scenario based on the same formula (18):

Manipulation function Ellastic amplitude g(t)

x(a) g(t)
O.25

0 _ 1

-O.15 0 2 4 6

;L(ct)=0.05 cosct-02 cos(or/2) Effective Operation:
el(O.4)(pq+qp)/2

The shape of g(t) agrees with the observation that the squeezing is caused by an increase of the

ellastic constant [14, 17].

The story does not end up here; it hardly starts. The method of distorted loops makes

possible much more sophisticated manipulations of quantum degrees, which will be probably the

daily routine of the experimental physics in a predictable future.
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